Comparison of periodic and random structures for scattering in thin- film microcrystalline silicon solar cells
نویسندگان
چکیده
Random structures are typically used for light trapping in thin-film silicon solar cells. However, theoretically periodic structures can outperform random structures in such applications. In this paper we compare random and periodic structures of similar shape. Both types of structure are based on atomic force microscopy (AFM) scans of a sputtered and etched ZnO layer. The absorption in a solar cell on both structures was calculated and compared to external quantum efficiency (EQE) measurements of samples fabricated on the random texture. Measured and simulated currents were found to be comparable. A scalar scattering approach was used to simulate random structures, the rigorous coupled wave analysis (RCWA) to simulate periodic structures. The length and height of random and periodic structures were scaled and changes in the photocurrent were investigated. A high height/length ratio seems beneficial for periodic and random structures. Very high currents were found for random structures with very high roughness. For periodic structures, current maxima were found for specific periods and heights. An optimized periodic structure had a period of Λ = 534 nm and a depth of d = 277 nm. The photocurrent of this structure was increased by 1.6 mA/cm or 15% relative compared to the initial (random) structure in the spectral range between 600 nm and 900 nm.
منابع مشابه
Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.
Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized b...
متن کاملAnalyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis
A simple and fast method was developed to determine the quantum efficiency and short circuit current of thin-film silicon solar cells prepared on periodically or randomly textured surfaces. The optics was studied for microcrystalline thin-film silicon solar cells with integrated periodic and random surface textures. Rigorous Coupled Wave Analysis (RCWA) was used to investigate the behaviour of ...
متن کاملOptical absorption and light scattering in microcrystalline silicon thin films and solar cells
Optical characterization methods were applied to a series of microcrystalline silicon thin films and solar cells deposited by the very high frequency glow discharge technique. Bulk and surface light scattering effects were analyzed. A detailed theory for evaluation of the optical absorption coefficient a from transmittance, reflectance and absorptance ~with the help of constant photocurrent met...
متن کاملThin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers
The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (singleand double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-temperature annealing behaviour can be observed (at temperatures around 100 to 160 C) for microcrystalline silicon solar cells. To further explor...
متن کاملLatest Results on Stabilized Flexible Thin Film Silicon Solar Cells
Our primary goal is to increase the stabilized efficiency of thin film silicon solar cells in the substrate (nip) configuration by using textured substrates and tandem structures, based on amorphous (a-Si:H) and microcrystalline silicon (μc-Si:H). In order to reduce costs of mass-produced thin film solar modules, special attention has been paid in developing processes compatible with plastic fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012